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TECHNICAL NOTE 4237

GENERAL 1NSTABIIZF% OF STIFFENED CYIJNDERS

By Herbert Becker

SUMMARY

Theoretical buckling stresses era determined in explicit form for
circulsr cylinders with circumferential and axial stiffening. The
loadings are sxial compression, radial pressure, hydrostatic pressure,
and torsion. Analyses were confined to moderate-length and long cylin-
ders. The investigation was based upon the use of a form of Donnel.1’s
eqmt ion derived by Taylor which is applicable to orthotropic cylinders.
The derivation of this eqyation is presented in this report.

INTRODUCTION

General instability in stiffened circular cylinders has been inves-
tigated for several cases of loading and types of stiffening. Analyses
were perfomed utilizing energy methods, the three differential equations
for orthotropic cylinders of FMgge (ref. 1), and various forms of
Donnell.’sequation (ref. 2) applicable to orthotropic cylinders.

Except for the analyses by Dschou (ref. 3) and Taylor (ref. 4),
these investigations have not yieMed explicit solutions for buckling
stress. Furthermore, the anslyses for external-pressure loadings have
been confined to ring-stiffened cylinders. In the present report,
explicit expressions”sre presented for axial-compression, external-
pressure, and torsional loadings on moderate-length and long cyfinders
with both axial and circumferential stiffening.

The axial-load solution is that developed by Taylor, who utilized
the simplifications employed by Donnell, together with the effects of
orthotropicity, snd derived an eighth-order psrtial differential equa-
tion for sxial-cmpression buckling. k this report, the equation of
Tsylor has been etiended to include torsionsl and pressure loadings.
In addition, Taylor’s assumption of a zero value for Poisson’s ratio
has been retained.

The snalyses are confined,to moderate-length cylinders, for which
the boundsry conditions influence the buckling stress, snd to long
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2 NACA TN 4237

cylinders, for which there is no boundsry influence. Details of bound- a
sry conditions for the different loadings sre discussed in the pertinent
sections below. n.-

The investigation is restricted to elastic buck13mg. Linear theory
is used in all cases. Section properties of the frsmes, stiffeners, and
sheet en nminal, as depicted in figure 1. The actual properties to
be used in design sre discussed in part.VI of the Handbook of Structural
Stability (ref. ~). This handbook contains a critical review of the
field of general instability. It presents comparisons of theory and test
data which delheate the util.ltyboth of the theoretical results presented
herein and of other theories which do not employ the orthotropic-shell
theory.

A srmmsry of the results of the investigations appears in table 1.
Short discussions of the analyses of each case investigated sre also
included. The derivations of the general instability stresses are pre-
sented in appendixes A to D.

This investigationwas conducted at New York University under the
sponsorship and with the financial assistance of the National Advisory
Ccamxl.tteefor Aeronautics.
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SYMBOLS

distributed area of frame including

*

w

effective sheet, in., ~~d

area of frame including effective sheet, sq in.

distributed area of stiffener including effective sheet, in., &ib

area of stiffener including effective sheet, sq in.
.-

constant

stiffener 6pacing, in.

frame spacing, in.

Young’s modulus, psi

Airy~s stress function

shear modulus, psi .-

distributed bending moment of inertia of frame, ~f/d, cu in.

distributed bending moment of inertia of stiffener, ~s/b, cu In.
*.
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h
q bending mcment of inertia of frame including effective sheet, ~n.k

.
Ys bending mcment of inertia of stiffener including effective sheet,

in,4

J= Jf + Js

Jf

Js

ky

. kp

distributed torsional moment of inertia of frame,
/

~f d, cu in.

distributed torsional mment of inertia of stiffener, I~~ b,
Cu in.

torsional mcment of inertia of stiffener, ~no4

torsional moment of inertia of frame, in.k

buckling coefficient for unstiffened circulsr cylinder under
lateral pressure

buckling coefficient for unstiffened circulsr cylinder under
hydrostatic pressure

length of cylinder, in.

Mx = a%EIs ~

a%..&GJ—
% 2 ax by

m,n parameters of sxial and circumferential buckle wave lengths

iii= mL/Yc

nix axial

‘= shear

normal load on cylinder, axts, lb/in.

load on cylinder, ti, lb/in.

‘Y
circumferential normal load on cylinder, ~~, lb/in.

.

.
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P = n/m
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Ex

‘Y

A

v

Pf

UC

ax

pressure loading on cylinder, psi

transverse shears on shell

radius of cylinder, in.

torque loading on cylinder

element, lb

wall, in.

thickness of cylinder wall, in.

effective thickness of cylinder wall in

distributed area of frsme, +/d, in.

shear-buckled

distributed area of stiffener, A~/b, in.

displacements in x-, y-, snd z-directions, in.

deflection constant

axial.coordinate, in.

circumferential coordinate, in.

radial coordinate, in.

parsmeter for unstiffeneiicylinder, L2/’Rt W&n V =

shear strain

@al normal strain

tangential nomnal strain

half-wave length of buckle in circumferential

Poisson’s ratio

state

o

direction, in.

radius of gyration of frsme section,
pf2 = %/+ = %pf~ ‘“

axial-compressive-bucklingstress, psi

axial normal stress, -psi
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A

ay circumferential-compressive-bucklingstress; also, general
circumferential nomal stress, psi

T shear-buckling stress; also, general shear stress, psi

HISTORICAL BACKGROUND

Early theoretical investigations into the buckling of stiffened
circulsz shells were performed by FUlgge (ref. 1), Dschou (ref. 3), d
Tsylor (ref. 4). Fltlggederived the trio of llnear equilibrium eqm-
tions analogous to those for isotropic cylinders which have been utilized
by many investigators. Dschou solved these equations for stiffened
circulsr cylinders under axial load.

Taylor derived a differential equation for axially loaded ortho-
tropic circular cylinders utilizing the same approach as did Donnell
in obtaining his we~-known eighth-order partial differential for iso-
tropic circulsr cylimders (ref. 2). The result is a relatively simple
explicit solution for the general instability stress which reduces to
the classical result for an isotropic cylinder”. There is a slight dis-.
crepancy due to Taylor’s assumption of a zero value for Poisson’s ratio.

4 Buckling of ring-stiffened circular cylinders under external pres-
sure was investigated by Salerno and @vine (ref. 6) and by Kendrick
(ref. 7) byusing the energy approach. Kendrick’s calculations led to
higher instability stresses than those obtained by Salerno and Levine,
who emitted certain terms in the energy equations.

Bodner investigated this case (ref. 8) using an equation of the
Donnell type similar to that presented in this report in which Poisson’s
ratio is included. The complete length range waa analyzed.

Stein, Sanders, and Crate detemnined the section properties of ring
stiffeners reqtired to avoid general instability in cylinders loaded in
torsion (ref. 9). Eayashi (ref. 10) analyzed stiffened cylinders in
torsion employing the identical approach used by Donnell for isotropic
cylinders. Hayashi showed that Donnell’s results sre a limiting case
of the buckling of orthotropic cylinders in torsion. The complete length
rsmge is included in this treatment, and the results sre obtained in the
same form as found by Donnell, except for the more general form of the
parameters.
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THEORETICAL IU3SULTS

The theoretical
various loadings are
are presented in the

buckling stresses for orthotropic
shown in table 1. Derivations of

cylinders under
these expressions

appendices. Buckling stresses were determined on
the assumption that the spacings of the longitudinal stiffeners and the
circumferentialframes were small enough to consider the cylinder to act
as a uniform orthotropic shell. Effects of boundery conditions on the
general instability stresses for the vsrious loadings are discussed in
the following paragraphs.

Axial IOad

The solution chosen by Taylor for the case of axial loading repre-
sents the waveform assumed-in the classical
isotropic cylinders, in which linear theory
to both moderate-length and long cylinders.

External Pressure

solution of simply &pp&ted
is used. It is applicable

.

The solution for external pressure is identical to that for axial
load and was app13ed by Batdorf to exter&l radial and hydrostatic pres- .
sures on simply supported cylinders (ref. XL). For long isotropic cyl-
inders Donnell’s equation leads to a buckling stress that is too high,
ccmpared with the results of an exact analysis, by a factor of 4/3.
Although the correspondingresult is obtainable for orthotropic cylin-
ders by the method presented in t~s report, Levy’s result for radially
loaded rings (ref. 12) has been presented instead since it corresponds
to the exact solution.

The analysis is simplified for external-pressureloadings by assuming
that the ratio of sxial to circumferentialwave length of the buckle is
negligibly small ccmpared with unity. This simplification is justifiable
for moderate-length cylinders. Furthermore, the explicit result agrees
with Bodner’s da~a for

The solutions and
loaded in torsion were

ring-stiffened cylin&s in ~his length ra@e.

Torsion

simplificationsapplied to stiffened cylinders
employed by Gerard and Eecker for moderate-len@h

isotropic cylinders (ref. 13). The long-cylinder solution does not sat-
isfy boundary conditions, although it appsxently is a satisfactory repre-
sentation of the buckle waveform for isotropic cylinders. However, in

w

.
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*
this length range a satisfactory solution to the problem may be obtained
although boundary conditions =e not satisfied for isotropic cylinders.
The same situation was assumed to apply to stiffened cylinders.

The moderate-length solution satisfies the requirement that w = O
on the boundaries but does not correspond to vanishing mcments at these
locations. However, the buckling stress for an isotropic moderate-length
cylinder in torsion is relatively insensitive to specifications on these
latter quantities, since there is less than 10-percent difference between
the theoretical buckling stresses for simply supported and clamped edges.

The general instability behavior of orthotropic cylinders is con-
sidered to parallel the buckling behavior of moderate-length and long
isotropic circular shells. Consequently, the same solution to the buck-
ling equation and the ssme simplifications in the mathematics are assmed
to be applicable. The mathematics was simplifiedby assuming that the
ratio of circumferential to axial wave len@h was negligible ccmpared
with unity.

College of Engineering,
New York Uhiversityj New York, N. Y.,

April 10, 1956.



APPENDIX A

DERIVATION OF DIFFEEWTIAL

The derivation of Taylor’s differential

.

EQUATION

equation in which the
effects of shesx and circ&nferentialnormsl st~ess are slso included is
presented below. The geometric properties of a stiffened cylinder are
portrsyed schematically in figure 1.

Tsylor derived the equilibrium equation for sm orthotropic cylinder
by ccunbiningthe canpatibilityequation for forces in the plane of a
plate element with that for eqtil.ibriumof forces normal to a plate eLe-
ment with initial curvature in one direction. These two situations are
depicted in figure 2.

For equilibria in the “plane” of the element

and for equilibrium normal

bNx i3Nw

sF+-&-=O1
to the element

.

(1)
“

at a a% at
+ 1?.:: a% ()3%?—-—

3X2 axay +&z- ~+—
—+m~axay+’Ny R *2 ‘p

= o (2)

in which ~ + ~ is the sum of the curvatures in the y-direction dueQ
Al Cy

to the initial shape of the shell and to the deformation under load.

It is reasonable to assume that Poissonts ratio vanishes for a
stiffened cylinder fabricated in the usual manner of aircraft construc-
tion, in which case Hooke’s law and the stress-straindisplacement
relations assume the forms
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●

✎

T k=-=
G Gf 7=$+$

Mx a%= EI~ —
ax2

~= EIf$

a%
‘w =-*GJ—

ax *

From equations (3a), (m), and (3c), t~ compatibility relation

follows, which is equivalent to

(3a)

(Sb)

(3C)

(x)

(%)

(Sf)

(4)

(5)

.
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If the Airy stress function 1? is introduced

then equation (~) becomes

(6)

(7)

This is the compatibility equation for forces in the plane of the
element. The eqpilibrim equation for forces normal to the plane of

.

the

E15

The

element may be obtained frcunequation (2) by writing ~-term
.

utilizing equations (~), (~ ),.and (3f) which yield

+(3J

function F
which will lead

(8)

may easily be eliminated from equations (7) and (8),
to the relation
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a

IL

if it is assuued that p is constant. For an isotropic
will reduce to DonnelJ_’seqpation for v = O.

(9)

cylinder -this

.

.



12 NACA TN 4237

APPENDIX

GENERAL INSTABIIZTY UNDER

Taylor utilized, as the solution

B

AXIAL COMPRESSION

to eqyation (9),

w

for the analysis of sxial
cylinder. For this case

Upon solving for ox and

=wmsinmxsinny (lo)

compressive buckling of an orthotropic circular

Nx = Crxts I (11)

.

‘Y =NW=O J .
minimizing with respect to m and n,

and

l/m = R
{[

}

1/2 18+j32(GJ/E) +P41~[(l/tf) +( P2E/G:) +(P4/ts] 1’4 (13)

.

(12)

where
-.

1132= n2m2 = p + (P2 + Q)l’2 (14)
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where

The half-wave lengths are fi/m and fi/n in the longitudinal snd
circumferential directions,

When t~=tf=; =t
eqpation (12) becomes

respectively.

and Is= If=
/

t3 12, then ~2 = 1

which is the classical eqpation for buckling of a long circular
tropic cylinder under axial losd when Poisson’s ratio is zero.
v = 0.3, the error is 4.6 percent.

(15)

iso-
When
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,

APPENDIX c

.

GENERAL INSTABILITY UNDER EXTERNAL PRESSURE

For external-pressure loading, equation (9) becomes

For unifo?m radial pressure, Nx = NW = 0, smd

Ny = pR

Thus

(16)

(17) “

.

(18)

Let

Ii = Wm

Then eqpdion (18) becomes

(& + 13n2n2 n4

)(
~+— 194 + ~

% Gt ts E

sin mx sin ny (19)

)

Rn2 ~m4 ~
m2na + Ifn4 - p — —=

E
(20)

~2

.
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.

.

and consequently the pressure is found in the form

pRn2
Ismk + ~ m%2 + Ifnk +

mh—=
E E

( )

~2m!:Eul%2k&

tf Gf t~

or, with ~ = n/m, the expression for the pressure becomes

(21)

(22)

Moderate-Length Cy13nder Under Radial Pressure

The critical pressm for a mderate-length cylinder under radial
pressure is obtained by minimization of pR, since R is constant.

(
-1/4

Is
m=—+

)(
~ + If~2

$2 )

(R2) ~ , & # . ~ ‘1/4

or

( )( )
1/4

~=(R) l/21B+y 132 “L+@+$
m + lfP t-p G%

(23)

which is the sane as for an axially compressed orthotropic circular
cyldnder. When equation (23) is substituted into equation (22), it is
found that

(24)

This is eqpal to
I

UC P2, amd becomes UC when p = 1.
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Actually m = ~ smd n = fifi where h is the half-wave length

in the circumfenntial direction. Then equation (22) becanes

-1

21

()(
PR afi L+g

)[()(

+ If$2

~

+ R2~2~+$P2+$ (25)—=
E Y ~2 s

For the minimnn integral value of a in the solution of equa-
tion (25), a = 1. Then with p >> 1 (where 13= L/X), which assumes
that the axial wave length is much
length,

larger than the circwml?erentid-wave

(26)

This is obtained by neglecting terms of lowest order in 13. Then
frm ~(pR) _ ~

.

a~
>

.
1/4

()

L 3ts
P2 =-—

fiR21f
(27)

and thus

Since ‘R then
‘Y=~

1/4

()

E ‘6%?3
‘Y

= 5.51 -—
L t#R2

(28)

(a)

.

.
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or

For isotropic cylinders,

or

‘Y =
c).85E(@3’2(B)

Using the notation

%&#

%=
12(1 - V2)L2

L2
Then tith ZL = ~, equation (31) reduces to

Icy
1/2

= 1.0332L

(note that v = O) which checks figure 1 of
in which

ky = 1.0392#2

for ZL > 100. ~S result CaTl be obtained

report, for radial pressure oq an isotropic

17

(30)

(31)

(32)

Batdorf‘S r13~Ort (ref. 11),

(33)

analytically. F&om Batdorf‘s

cylinder,

.

.
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ky - (Z2+,+2
P2

where m = ti/L. For hydrostatic

Whenfi= 1 and 132>>1,

ky =kp=

W@++
( )&2 ~2 + ~2 2

pressure,

12zL%4

( )(.%+J32 $+j32
)

Minimization of eqpation (36) ~ads to equation (33).

Mcderate-Iength Cylinder Under Hydrostatic Pressure

For the moderate-length orthotropic cylinder under hydrostatic
pressure, eqpation (25) becomes

()pRm2+n2 .1@4+GJm~n2+1fn4+——
E2 E

*

.

(34) .

(35)

(36)

(37)

or

When !32>> 1,
equal, and equation

the results of hydrostatic
(~) will apply.

and radial pressure are

.

.
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Long @linder Under Radial Pressure

For a long cylinder under radial pressure, the buckling mode corre-
sponds to that of a ring, for which Levy obtained the result

P= ~If/R3

With

~=~

it fouows, frcm equatio~ (39) -d (~) ~ that

Uy = 3E(Pf/R)2

(39)

(40)

(41)
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APPENDIX D

BUCKLING OF CIRCULAR CYIXNDERS UNDER TORSION

Moderate-Iength Cylinders

For shear loading of moderate-length circular

Nw.tT. T/2JcR2

N.= Ny=o

1

As was shown by Becker and Gerard for isotropic
length, a usef~ solution

w= (KnJcxsin —
L

is used in equation (9).

for -rCr is obtained

)[~ny
F-

sin (m + 2)%

This satisfies w = O

cylinders

(42)

cylinders of moderate
when the expression

1+? (43)

at the cylinder ends,

“

—

although &/& and a2w/&2 are not prescribed.
.

Such freedom from
bounda~y conditions is indicated for is&opic cylinders by the small
difference (less than 10 percent) between the buckling stresses for
clamped and stiply supported cylinders of moderate length.

—

Equation (43) is adapted here for orthotropic cylinders. When it
is substituted into equation (9), with the additional stipulations that

(mR/nL)2 <<1 and ~m + 2)fi/nL]2 <<1, then it is found that

2T _
E

+ ()[ 1‘snR3m4+(m +2)4.—
n2 nL 2(m + 1)

The mininnxnvalue of T is found from

(44)

.

.
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which yields

Z21

.

.

.

i=3.46&)3’8(&~’8($”2

This agrees with the data of Stein, Sanders, and Crate for ring-stiffened
cylinders in torsion (ref. 8), at large values of ~. 1% reduces to the

isotropic solution for v = O:

T 5/4[~=0.~31(t@) \R/L)
1/2

(46)

The result of eqpation (46) is 5.7 percent lower than the exact isotropic
solution obtained by Batdoti for v = 0.313.

Long @linders

For torsion on a long cylinder the classical solution for the iso-
tropic case is

(47)

When this is substituted into equation (9) using equations (42), it is— . .
found that

(48)

Since v =
(mR/nL)c< 1.

0, then E/G =2. Furthermore, it is assumed again that
Then eqpation (47) becomes

.

.



22 NACA TN 4237

“

(49) .

Upon minimization of T with respect to m and employing n = 2 for
the long cylinder,

l-= ,.7,4E(>~’4(#4

This reduces to the isotropic result, with v = O,

T = 0.272X(t/R)3/2

(50)

(51)

w

.

.
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TABIX 1

TTIEmcAL GENERAL 1N9MBIHT% SYFW3SES FCiR

ORTHOIIROPIC CIRCUMR CYLINDERS

Loading Moderate-1 ength cylinders Img cylinders

Axial
Compression

a“c==[~~:$:~r a“c=~b$i:f:~r

External radial ?=+y4(!#y2@ ay “ 3E(Pf/R)2
or hydrostatic
pressure

Torsion . . ,.’&@+~i8(&.’8(#2 T= ,.,%.($~’’(~y”

%ee equation (14) for value of f3<.

* .

)

m
-1=



.
.
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.

Figure 2.- Forces acting on a cylinder element.

NACA -Langley Field, VA.


